
Math 10B Final Review - Fall 2025

Exercise 1. Evaluate ∫ 10

1

5
√
t+

2

t1/3
dt.

Solution: By the fundamental theorem of calculus, we know that

F (10)− F (1) =

∫ 10

1

5
√
t+

2

t1/3
dt

where F (t) is an antiderivative of 5
√
t+ 2

t1/3
. Using the “anti-power rule”, we see that∫ √

tdt =

∫
t1/2dt =

1
1
2
+ 1

t1/2+1 =
2

3
t3/2

and ∫
1

t1/3
dt =

∫
t−1/3dt =

1

−1
3
+ 1

t−1/3+1 =
3

2
t2/3.

So, an antiderivative is given by

F (t) = 5

(
2

3
t3/2
)
+ 2

(
3

2
t2/3
)

which implies∫ 10

1

5
√
t+

2

t1/3
dt = 5

(
2

3
(10)3/2

)
+ 2

(
3

2
(10)2/3

)
− 5

(
2

3
(1)3/2

)
− 2

(
3

2
(1)2/3

)
.
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Exercise 2. Compute

d

dx

∫ ex
2+1

sinx

t3(ln t)dt.

Solution: By the fundamental theorem of calculus, we know that

d

dx

∫ b(x)

a(x)

f(t)dt = f(b(x))b′(x)− f(a(x))a′(x).

In our problem, we see that

a(x) = sin x

b(x) = ex
2+1

f(x) = x3(lnx)

so

d

dx

∫ ex
2+1

sinx

t3(ln t)dt =
(
ex

2+1
)3

ln
(
ex

2+1
)(

ex
2+1
)′

− (sinx)3 ln(sinx)(sinx)′

=
(
ex

2+1
)3

ln
(
ex

2+1
)(

ex
2+1
)
(2x)− (sinx)3 ln(sinx)(cosx).
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Exercise 3. Find the average value of f(x) =
√
9− x2 over [−3, 3] and all −3 ≤ c ≤ 3 such

that f(c) = favg.

Solution: The formula for the average of f(x) over the interval [a, b] is given by

favg =
1

b− a

∫ b

a

f(x)dx.

So, in our problem,

favg =
1

3− (−3)

∫ 3

−3

√
9− x2dx =

1

6

∫ 3

−3

√
9− x2.

Notice that f(x) =
√
9− x2 where x ∈ [−3, 3] is the upper half of the circle of radius

√
9 = 3

center at the origin so
∫ 3

−3
f(x)dx is the area of this half circle. The area of the whole circle

is π(3)2 so the area of the upper half is

1

2

(
π(3)2

)
=

9

2
π =

∫ 3

−3

√
9− x2dx.

Thus, we have

favg =
1

6

∫ 3

−3

√
9− x2dx =

9π

12
.

To find c, we set f(c) = favg and solve for c. We found favg above so we have the equation:

9π

12
= f(c) =

√
9− c2.

After squaring both sides, we get that(
9π

12

)2

= 9− c2.

Solving the above equation for c, we get that

c = ±

√(
9π

12

)2

− 9.
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Exercise 4. The following function represents the acceleration of a particle moving along
the x-axis:

a(t) = 2t− 12 for t ≥ 0.

The starts at x0 = 3 and has an initial velocity of v0 = 20 units/sec.

(a) Find the velocity function v(t).

(b) Find the position function x(t).

(c) Find the displacement on the time interval [0, 4].

(d) Find the total distance travel on the time interval [0, 4].

Solution:

(a) The acceleration function is given by the derivative of the velocity so the fundamental
theorem of calculus tells us that

v(t) =

∫
a(t)dt =

∫
2t− 12dt = t2 − 12t+ C.

We are given an initial value so we can solve for C in the above equation. Namely,

20 = v(0) = 02 − 12(0) + C = C

which gives us our final answer

v(t) = t2 − 12t+ 20.

(b) The velocity function is given by the derivative of the position so the fundamental
theorem of calculus tells us that

x(t) =

∫
v(t)dt =

∫
t2 − 12t+ 20dt =

t3

3
− 6t2 + 20t+ C.

We are given an initial value so we can solve for C in the above equation. Namely,

3 = x(0) =
03

3
− 6(0)2 + 20(0) + C = C

which gives us our final answer

x(t) =
1

3
t3 − 6t2 + 20t+ 3.

(c) Displacement is given on the interval [a, b] is given by∫ b

a

v(t)dt = x(b)− x(a)

where the above equality is given by the fundamental theorem of calculus since x′(t) =
v(t). We found x(t) in part (b) so our total displacement on the time interval [0, 4] is∫ 4

0

v(t)dt = x(4)− x(0) =
1

3
43 − 6(4)2 + 20(4) + 3− 3 =

1

3
43 − 6(4)2 + 20(4).
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(d) Total distance traveled on [a, b] is given by∫ b

a

|v(t)|dt

so we need to evaluate ∫ 4

0

∣∣t2 − 12t+ 20
∣∣ dt.

To deal with the absolute value in the above integral, we need to split [0, 4] into parts
where t2 − 12t+20 is either entirely negative or entirely positive. To do so, we find the
zeros of t2 − 12t+ 20. The quadratic formula tells us that the zeros are given by

12±
√

122 − 4(20)

2
=

12± 4
√
32 − 5

2
=

12± 8

2
= 6± 4.

Of those two zeros, only 2 is in the interval [0, 4] so we need to split our integral at 2.
Since v(0) = 20 > 0 and v(3) = 9 − 36 + 20 = −7 < 0, we see that |v(t)| = v(t) when
0 ≤ t ≤ 2 and |v(t)| = −v(t) when 2 ≤ t ≤ 4. Thus, we have∫ 4

0

|v(t)|dt =
∫ 2

0

v(t)dt−
∫ 4

2

v(t)dt

= d(2)− d(0)− (d(4)− d(2)) [by FTC]

= 2d(2)− d(4)− d(0)

= 2

(
1

3
23 − 6(2)2 + 20(2) + 3

)
−
(
1

3
43 − 6(4)2 + 20(4) + 3

)
− 3.
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Exercise 5. Evaluate ∫
x sin(lnx)dx.

Solution: Notice that lnx is our “inside” function here so we begin by making the substi-
tution:

t = lnx

dt =
1

x
dx

Solving for x in terms of t, we see that x = et. Solving for dx in terms of t, we see that
dx = xdt = etdt so our integral, which we’ll call I, becomes

I =

∫
et(sin t)

(
etdt

)
=

∫
e2t sin tdt.

Now, we have an integral with no “inside” functions and whose integrand is the product of
two function so we should apply integration by parts. Recalling LIPET, we choose u to be
e2t so dv is the rest of our integrand which gives us:

u = e2t v = − cos t
du = 2e2tdt dv = sin tdt

Applying the integration by parts formula, we have

I = −e2t cos t−
∫

(− cos t)(2e2t)dt = −e2t cos t+ 2

∫
e2t cos tdt (1)

We once again have an integral with no “inside” functions and whose integrand is the product
of two function so we should apply integration by parts. Once again recalling LIPET, we
have:

u = e2t v = sin t
du = 2e2tdt dv = cos tdt

Applying the integration by parts formula, we have∫
e2t cos tdt = e2t sin t−

∫
2e2t sin tdt = e2t sin t− 2

∫
e2t sin tdt = e2t sin t− 2I + C.

Plugging this into equation (1), we see that

I = −e2t cos t+ 2

∫
e2t cos tdt = −e2t cos t+

(
e2t sin t− 2I + C

)
.

Solving for I, we find that

I =
1

3

(
e2t sin t− e2t cos t

)
+ C.

Undoing our substitution t = lnx, we get the final answer

I =
1

3

(
e2 ln t sin(ln t)− e2 ln t cos(ln t)

)
+ C.
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Exercise 6. Evaluate ∫
(x2 + x+ 1) lnxdx.

Solution: Anytime we want to integrate the product of a polynomial and a transcendental
function, integration by parts is the best place to start. Recalling LIPET, we set:

u = lnx v = 1
3
x3 + 1

2
x2 + x

du = 1
x
dx dv = (x2 + x+ 1)dx

Applying the integration by parts formula, we see that∫
(x2 + x+ 1) lnxdx =

(
1

3
x3 +

1

2
x2 + x

)
lnx−

∫
1

x

(
1

3
x3 +

1

2
x2 + x

)
dx

=

(
1

3
x3 +

1

2
x2 + x

)
lnx−

∫
1

3
x2 +

1

2
x+ 1dx

=

(
1

3
x3 +

1

2
x2 + x

)
lnx−

(
1

32
x3 +

1

22
x2 + x

)
+ C.
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Exercise 7. Evaluate ∫
1

(et − e−t)2
dt.

Solution: We begin by simplifying the integrand:

1

(et − e−t)2
=

1(
et − 1

et

)2
=

1(
e2t−1
et

)2
=

e2t

(e2t − 1)2
.

Now, we see that e2t − 1 is an “inside” function so consider the substitution

u = e2t − 1

du = 2e2tdt.

This gives us ∫
1

(et − e−t)
dt =

∫
e2t

(e2t − 1)2
dt =

1

2

∫
1

u2
du

=
1

2

(
− 1

−2 + 1
u−2+1

)
+ C

= − 1

2u
+ C

= − 1

2(e2t − 1)
+ C

where the final equality follows from our substitution: u = e2t − 1.
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Exercise 8. Evaluate ∫
(x3 − x+ 1)e2xdx.

Solution: Whenever we want to integrate the product of a polynomial and a transcendental
function, we first attempt integration by parts. Recalling LIPET, we take u to be the
polynomial. Moreover, as taking the derivative of a polynomial eventually results in 0, we
will employ the tabular method. We get:

u dv
x3 − x+ 1 e2x

3x2 − 1 1
2
e2x

6x 1
22
e2x

6 1
23
e2x

0 1
24
e2x

Remembering to alternate signs, we get that∫
(x3 − x+ 1)e2xdx =

1

2
(x3 − x+ 1)e2x − 1

22
(3x2 − 1)e2x +

1

23
(6x)e2x − 6

24
e2x + C.
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Exercise 9. Find the volume of the shape obtained by revolving the area between

f(x) = sin x and g(x) = cos x

around the x-axis for 0 ≤ x ≤ π
2
.

Solution: Referencing an unit circle, we see that sinx = cosx only when x = π
4
for 0 ≤ x ≤

π
2
. Since cos(0) = 1 and sin(0) = 0, cos x is the “top” function while sin x is the “bottom”

function for 0 ≤ x ≤ π/4 and they switch for π/4 ≤ x ≤ π/2. Thus, the volume of this
shape is given by summing the volume of revolving the area between f(x) and g(x) for x in
[0, π/4] and [π/4, π/2] separately. Hence, we have

Volume =

∫ π/4

0

π (cosx− sinx)2 dx+

∫ π/2

π/4

π (sinx− cosx)2 dx

= π

[∫ π/4

0

(cosx− sinx)2dx+

∫ π/2

π/4

(cosx− sinx)2dx

]

= π

∫ π/2

0

(cosx− sinx)2dx

= π

∫ π/2

0

(
(cosx)2 + (sinx)2 − 2(sinx)(cosx)

)
dx

= π

∫ π/2

0

1− 2(sinx)(cosx)dx

=
π2

2
− 2π

∫ π/2

0

(sinx)(cosx)dx.

Finally, we make the substitution:

u = sinx

du = cosxdx

so our bounds become sin(0) = 0 and sin(π/2) = 1. Thus,

Volume =
π2

2
− 2π

∫ π/2

0

(sinx)(cosx)dx

=
π2

2
− 2π

∫ 1

0

udu

=
π2

2
− 2π

(
1

2
u2

∣∣∣∣1
0

)

=
π2

2
− π.
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Exercise 10. Find the area between

f(x) = x3 and g(x) = x

for 0 ≤ x ≤ 10.

Solution: Graphing both f(x) and g(x), we see the g(x) ≤ f(x) for 0 ≤ x ≤ 1 while
f(x) ≤ g(x) for 1 ≤ x ≤ 10. So, the area between f and g over [0, 10] is given by∫ 10

0

|f(x)− g(x)|dx =

∫ 1

0

x− x3dx+

∫ 10

1

x3 − xdx

=
1

2
x2 − 1

4
x4

∣∣∣∣1
0

+
1

4
x4 − 1

2
x2

∣∣∣∣10
1

=
1

2
− 1

4
+

(
1

4
104 − 1

2
102 − 1

4
+

1

2

)
.
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Exercise 11. Evaluate ∫
x

x2 − x− 2
dx.

Solution: Notice that the integrand is a rational function and there’s no obvious substitution
to simplify the denominator into a linear polynomial, so we employ parital fractions. Note
that x2 − x− 2 factors as (x− 2)(x+ 1) so

x

x2 − x− 2
=

A

x− 2
+

B

x+ 1
=⇒ x = A(x+ 1) +B(x− 2)

where the right equation is obtained by multiplying both sides of the left equation by x2 −
x− 2 = (x− 2)(x+ 1). Evaluating the equation on the left at x = −1 and x = 2 gives us:

−1 = A(−1 + 1) +B(−1− 3) = −4B =⇒ B =
1

4

2 = A(2 + 1) +B(2− 2) = 3A =⇒ A =
2

3

Thus, our integral becomes∫
x

x2 − x− 2
dx =

∫
2/3

x− 2
dx+

∫
1/4

x+ 1
dx =

2

3
ln |x− 2|+ 1

4
ln |x+ 1|+ C.
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Exercise 12. Evaluate ∫
1

x((lnx)2 − 3(lnx) + 2)
dx.

Solution: We see that ln x is an “inside” function of our integrand so we make the substi-
tution

u = lnx

du =
1

x
dx

So, our integral becomes∫
1/x

(lnx)2 − 3(lnx) + 2
dx =

∫
1

u2 − 3u+ 2
du.

Now, we have a rational function and no obvious substitution so we employ partial fractions.
Note that u2 − 3u+ 2 = (u− 1)(u− 2) so we have

1

u2 − 3u+ 2
=

A

u− 1
+

B

u− 2
=⇒ 1 = A(u− 2) +B(u− 1).

Evaluating the equation on the left at u = 2 and u = 1, we get

1 = A(2− 2) +B(2− 1) = B =⇒ B = 1

1 = A(1− 2) +B(1− 1) = −A =⇒ A = −1

Thus, our integral becomes∫
1

u2 − 3u+ 2
du =

∫
−1

u− 1
du+

∫
1

u− 2
du

= − ln |u− 1|+ ln |u− 2|+ C

= − ln | lnx− 1|+ ln | lnx− 2|+ C

where the final equality comes from our substitution: u = lnx.
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Exercise 13. Determine whether the following improper integrals converge or diverge:

(a) ∫ ∞

1

1

x50 + 2x− 1
dx

(b) ∫ ∞

1

(lnx)123

x
dx

(c) ∫ 3

1

1

(x− 2)1/5
dx

Solution:

(a) Note that
1

x50 + 2x− 1
≈ 1

x50

when x is large. Integrating 1/x50 over [1,∞) results in a finite value so we conjecture
that our original integral does as well. To prove this, we use the comparison theorem.
Since x ≥ 1, we know that

1

x50 + 2x− 1
<

1

x50

as 2x− 1 ≥ 2(1)− 1 = 1 > 0. By the comparison theorem, we have∫ ∞

1

1

x50 + 2x− 1
dx ≤

∫ ∞

1

1

x50
dx = lim

t→∞

−1

49
x−49

∣∣∣∣t
1

= lim
t→∞

− 1

49t49
−
(
− 1

49

)
=

1

49
< ∞.

Hence, the integral converges.

(b) Note that 1 ≤ (lnx)123 for x ≥ e as ln x is an increasing function. So, we see that

1

x
≤ (lnx)123

x

for x ≥ e. By the comparison theorem, we see that∫ ∞

e

(lnx)123

x
dx ≥

∫ ∞

e

1

x
dx = ∞.

Since ∫ ∞

1

(lnx)123

x
dx =

∫ e

1

(lnx)123

x
dx+

∫ ∞

e

(lnx)123

x
dx,

we conclude our integral diverges as∫ e

1

(lnx)123

x
dx < ∞ and

∫ ∞

e

(lnx)123

x
dx = ∞.
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(c) We begin by noting that∫
1

(x− 2)1/5
dx =

1

−1/5 + 1
(x− 2)−1/5+1 + C =

5

4
(x− 2)4/5 + C.

Therefore, we see that∫ 3

1

1

(x− 2)1/5
dx = lim

t→2−

5(x− 2)4/5

4

∣∣∣∣t
1

+ lim
t→2+

5(x− 2)4/5

4

∣∣∣∣3
t

= lim
t→2−

5(t− 2)4/5

4
− 5

4
+

5

4
− lim

t→2+

5(t− 2)4/5

4
= 0 < ∞

so our integral converges.
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Exercise 14. Solve for y with y(0) = 1:

(a)
dy

dx
= (1 + 4x3)

y

ln y

(b)
dy

dx
=

yx

1 + x2

Solution:

(a) “Multiplying” both sides by ln y
y
dx, we get

ln y

y
dy = 1 + 4x3dx.

Integrating both sides, we get∫
ln y

y
dy =

(ln y)2

2
=

∫
1 + 4x3dx = x4 + x+ C.

Solving for y, we find that

y = e±
√
x4+x+C .

Using the fact that y(0) = 1, we see that

1 = y(0) = e±
√
04+0+C = e±

√
C =⇒ ±

√
C = 0 =⇒ C = 0.

Giving us the final answer,

y = e±
√
x4+x.

(b) “Multiplying” both sides by dx
y
, we get

1

y
dy =

x

1 + x2
dx.

Integrating both sides, we get∫
1

y
dy = ln y =

∫
x

1 + x2
dx =

1

2
ln |1 + x2|+ C.

Solving for y, we find that

y = Ce
1
2
ln |1+x2| = C|1 + x2|1/2 = C(1 + x2)1/2

as 1 + x2 ≥ 0 for all x. Finally, using the fact that y(0) = 1, we solve for C:

1 = y(0) = C(1 + 02)1/2 = C.

Thus, our final answer is

y =
√
1 + x2.
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Exercise 15. Given a tank with 250L and 4kg of salt mixed in, suppose that 4L is added to
the tank every minute which contains 1

4
kg/L of salt. Moreover, 4L is drained out of the tank

every minute so the amount of liquid remains constant. Find the concentration function for
salt in the tank as a function of time.

Solution: Let u(t) denote the amount of salt in the tank at time t then

du

dt
= (in flow/min)− (out flow/min) =

1

4
(4)− u

250
(4) = 1− 2u

125
=

125− 2u

125
.

“Multiplying” both sides by dt
125−2u

, we get that

1

125− 2u
du =

1

125
dt.

Integrating both sides, get that∫
1

125− 2u
du = −1

2
ln |125− 2u| = t

125
+ C.

Solving for u, we see that

|125− 2u|−1/2 = Cet/125 =⇒ 125− 2u = Ce−2t/125 =⇒ 1

2

(
125− Ce−2t/125

)
= u.

Since the tank has 4kg of salt initially, we see that

4 = u(0) =
1

2

(
125− Ce−2(0)/125

)
=

1

2
(125− C) =⇒ C = 125− 8 = 117.

Thus, we find that

u =
1

2

(
125− 117e−2t/125

)
.

Finally, the salt concentration is given by u over the total amount of liquid in the tank:

u

250
=

1

500

(
125− 117e−2t/125

)
.
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