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Preliminaries

What is a code?

1 Let Fq be a finite field, with q = pl elements. A code C over Fq is a subset of
Fn

q = Fq × . . .× Fq.
2 Elements of a code are called codewords, and the length of the code is n,

where C ⊂ Fn
q.

3 C is a linear code if it is a vector subspace of Fn
q, and the dimension of the

code is k := dimFqC. The dimension of the code tells us how much
information each codeword contains.
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Preliminaries

What is a code?

1 For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn
q, Hamming distance from x to y

is
d(x, y) := #{i | xi 6= yi}

The Hamming weight of x is wt(x) = d(x, (0, 0, · · · , 0)), or simply the
number of non-zero entries in a codeword.

2 The minimum distance of C is

dmin = min{d(x, y) | x, y ∈ C and x 6= y}

If C is a linear code,

dmin = min{wt(x)|x ∈ C and x 6= (0, 0, . . . , 0)}.
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Preliminaries

Minimum Distance

The minimum distance of a code tells you how many errors a code can
detect/correct. Linear codes can detect up to d − 1 errors and correct up to
b d−1

2 c errors.

b d−1
2 c b d−1

2 c
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Preliminaries

Toric Codes

Hansen (1997): Consider codes given by toric varieties:

{toric variety of dim m} ↔ {an integral convex polytope P ⊂ Rm}

Given an integral convex polytope P ⊂ Rm:

LP = SpanFq{xβ | β ∈ P ∩ Zm}

and define the evaluation map

ev : LP → F(q−1)m

q

f 7→ (f(γ) | γ ∈ (F∗
q)

m)

The image of the evaluation map gives the toric code CP(Fq). The matrix
corresponding to this evaluation map gives the generator matrix for CP.
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Preliminaries

Example: Consider the polytope P ⊂ R2 with the k = 4 lattice points
(0, 0), (1, 0), (0, 1) and (−1,−1)

LP = SpanFq{x0y0, x1y0, x0y1, x−1y−1}

= SpanFq{1, x, y, x−1y−1}

Given P ⊂ Rm, we know the length and dimension of P’s corresponding code.
The length of CP(Fq) is n = (q − 1)m

The dimension of CP(Fq) is k = the number of lattice points in P
The minimum distance of CP, denoted d(CP), is exactly
(q − 1)m − max0 ̸=f∈LP |Z(f)| where Z(f) is the set of all (F×

q )m-zeros of f.
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Preliminaries

Minkowski Sum

Let P and Q be convex polytopes in Rm. Their Minkowski sum is

P + Q := {p + q ∈ Rm| p ∈ P, q ∈ Q}

+ + +
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Preliminaries

Minkowski Length

The (full) Minkowski length L = L(P) of a lattice polytope P is the largest
number of primitive segments (line segments with lattice points only on each end)
whose Minkowski sum is in P.

Equivalently, L(P) is the largest number of non-trivial lattice polytopes whose
Minkowski sum is in P. We call the largest of these decompositions the maximal
decomposition in P.

In [3], Soprunov and Soprunova [2009], proved bounds relating Minkowski length
of polytopes to the minimum distance of the codes generated by them.
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Periodicity of Polytopes

Scaling a Polytope

One important transformation is the t-dilation of a polytope P

tP := {tp : p ∈ P} .

While this transformation is easily defined, the effect it has on the Minkowski
length of P is not so easily described. We can, however, always say that

L(tP) ≥ tL(P).

But, when do we have equality (=) or strict inequality (>)?
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Periodicity of Polytopes

Period-1 Polytopes

Definition
Let P ⊂ Rm be a convex integral polytope. We say that P is a period-1 polytope
iff L(tP) = tL(P) for all t ≥ 0. If there is some t such that L(tP) > tL(P) then we
say that P has period strictly greater than 1. Equivalently defined in [4].

So, what do period-1 polytopes look like?

Zonotope Clipped Rectangle Exceptional Triangle

Figure: Two (2) Examples and a Non-Example
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Periodicity of Polytopes

How Do We Know When a Polytope is Period-1?

Let P,Q ⊂ Rm be integral polytopes.

Proposition
If P ⊆ Q with L(P) = L(Q) and Q has period 1, then P also has period 1.

Proposition
If P ⊆ Q with L(P) = L(Q) and P has period strictly greater than 1, then Q also
has period strictly greater than 1.

Corollary (Period-1 Polytopes are Nice)
If P ⊂ R2 and P has period 1, then the exceptional triangle cannot be a summand
in any of its maximal decompositions.
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Periodicity of Polytopes

Connection to Toric Surface Codes

Proposition
Suppose that P ⊂ R2 does not contain an exceptional triangle in any maximal
decomposition. Let 0 6= g ∈ LP be a polynomial with maximum number of zeros
and g = g1 . . . gr be its factorization into irreducible polynomials. Then, when
q > Area(P), we have that r = L(P).

Take-away: To compute the maximum number of zeros in LP (equivalently
d(CP)), we only need to look at the polynomials corresponding to maximal
decompositions in P.
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Minimum Distance of Representative Period-1 Polytopes

Minimum Distance of Representative Period-1 Polytopes
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Minimum Distance of Representative Period-1 Polytopes

Minimum Distance of Smallest Maximal Decompositions

It is known [3, Proposition 3.1] that all smallest maximal decompositions are
lattice equivalent to Q = m[0, e⃗1] + n[0, e⃗2] + ℓ[0, e⃗1 + e⃗2].

m

n

ℓ

Q

Lemma
The only maximal decomposition in Q is Q itself.

Theorem
The minimum distance of the toric code associate to Q is

d(CQ) =

{
(q − 1)2 − L(Q)(q − 1) + mn, when ℓ = 0

(q − 1)2 − L(Q)(q − 1) + ℓ(m + n) when ℓ > 0
.
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Minimum Distance of Representative Period-1 Polytopes

Little and Schwarz’s Method

In [2], Little and Schwarz use Vandermonde matrices to determine the
minimum distance of simplices and boxes

Let P ∩ Z2 = {(ai, bi) : 1 ⩽ i ⩽ #P}, and
S = {(x1, y1), (x2, y2), . . . , (x#P, y#P)}, with |S| = #P, then we have:

V(P; S) =


xa1
1 yb1

1 xa1
2 yb1

2 xa1
3 yb1

3 · · · xa1
#Pyb1

#P
xa2
1 yb2

1 xa2
2 yb2

2 xa2
3 yb2

3 · · · xa2
#Pyb2

#P
xa3
1 yb3

1 xa3
2 yb3

2 xa3
3 yb3

3 · · · xa3
#Pyb3

#P
...

...
... . . . ...

xa#P
1 yb#P

1 xa#P
2 yb#P

2 xa#P
3 yb#P

3 · · · xa#P
#P yb#P

#P


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Minimum Distance of Representative Period-1 Polytopes

Little and Schwarz’s Method

[2, Proposition 1]
Let d be a positive integer and assume that in every set T ⊂ (F∗

q)
m with

|T| = (q − 1)m − d + 1 there exists some S ⊂ T with |S| = #(P) such that
det V(P; S) 6= 0. Then the minimum distance satisfies d(CP) ⩾ d.

To get d(Cp) ⩽ d, we can find a polynomial with an appropriate amount of
zeroes (which can be difficult).

Can we replicate Little and Schwarz’s methods for different, but still “simple”
polytopes in R2?
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Minimum Distance of Representative Period-1 Polytopes

Example

Let P ⊂ R2 be an integral, convex, period-1 polytope with 8 lattice points:
P = ℓ[0, e⃗1] + ℓ[0, e⃗2] + ℓ∆ with ℓ = 1

(0, 0)
(2, 0)

(0, 2) (1, 2)

(2, 1)P : (0, 1)

(1, 0)

(1, 1)

Using the methods of Little and Schwarz, we showed that the following bounds
hold for q > 2ℓ+ 1:

d(CP) ⩽ (q − 1)2 − 3(q − 1) + 2 , and d(CP) ⩾ (q − 1)2 − 3(q − 1) + 2
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Minimum Distance of Representative Period-1 Polytopes

Example

1 Consider the rectangle R := conv{(0, 0), (2, 0), (0, 1), (2, 1)} ⊂ P. From [2,
Theorem 3], the minimum distance of this rectangle is
d(CR) = (q − 1)2 − 3(q − 1) + 2. Thus, d(CP) ⩽ (q − 1)2 − 3(q − 1) + 2.

2 Using the pigeonhole principle, we showed that for all T ⊂ (F∗
q)

2 with
|T| = (q − 1)2 − d + 1 where d = (q − 1)2 − 3(q − 1) + 2 we can choose an
S ⊂ T, with S = {(x1, y1), . . . , (x8, y8)}, such that
x1 = x2 = x3, x4 = x5 = x6, and x7 = x8.
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Minimum Distance of Representative Period-1 Polytopes

Vandermonde Matrix

Thus, the Vandermonde matrix corresponding to P is given below:

V(P; S) =



1 1 1 1 1 1 1 1

x1 x1 x1 x4 x4 x4 x7 x7
x21 x21 x21 x24 x24 x24 x27 x27
y1 y2 y3 y4 y5 y6 y7 y8
y21 y22 y23 y24 y25 y26 y27 y28

x1y1 x1y2 x1y3 x4y4 x4y5 x4y6 x7y7 x7y8
x21y1 x21y2 x21y3 x24y4 x24y5 x24y6 x27y7 x27y8
x1y21 x1y22 x1y23 x4y24 x4y25 x4y26 x7y27 x7y28


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Minimum Distance of Representative Period-1 Polytopes

Vandermonde Matrix

At the cost of changing the sign of the determinant, we can perform column
operations on V(P; S) to obtain the following:

V(P; S) =



1 1 1 0 0 0 0 0
x1 x4 x7 0 0 0 0 0
x21 x24 x27 0 0 0 0 0
y1 y4 y7 y1−y2 y1−y3 y4−y5 y4−y6 y7−y8
y21 y24 y27 y21−y22 y21−y23 y24−y25 y24−y26 y27−y28

x1y1 x4y4 x7y7 x1y1−x1y2 x1y1−x1y3 x4y4−x4y5 x7y4−x2y6 x3y7−x7y8
x21y1 x24y4 x27y7 x21y1−x21y2 x21y1−x21y3 x24y4−x24y5 x24y4−x24y6 x27y7−x27y8
x1y21 x4y24 x4y27 x1y21−x1y22 x1y21−x1y23 x4y24−x4y25 x4y24−x4y26 x7y27−x7y28



After performing column operations, we get a lower block triangular matrix with
blocks A,B,C,D whose determinant is equal to det(A)det(D)
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Minimum Distance of Representative Period-1 Polytopes

Vandermonde Matrix

The lower right block, D, is a 5× 5 matrix. Each column of D has a common
factor yi − yj that can be taken out at the cost of the determinant changing by
some nonzero scalar.

D :=


1 1 1 1 1

x1 x1 x2 x2 x3
x21 x21 x22 x22 x23

y1 + y2 y1 + y3 y4 + y5 y4 + y6 y7 + y8
x1(y1 + y2) x1(y1 + y3) x2(y4 + y5) x2(y4 + y6) x3(y7 + y8)


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Minimum Distance of Representative Period-1 Polytopes

Vandermonde Matrix

This process can be repeated once more until we are left with D2, a 2× 2

standard univariate Vandermonde matrix, for which we know the determinant to
be non-zero.

Thus, applying [2, Proposition 1], we know that d(CP) ⩾ d. Finally,
d(CP) = (q − 1)2 − 3(q − 1) + 2.

Using this same method, we proved that for ℓ = 2, d(CP) = (q − 3)(q − 5), for
q > 5. Similarly, for ℓ = 3, d(CP) = (q − 4)(q − 7), for q > 7
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Next Steps

1 Extend the Little and Schwarz method to prove a minimum distance formula
for P = ℓ[0, e1] + ℓ[0, e2] + ℓ∆ for any ℓ ∈ Z+

2 Prove minimum distance formulas for “nice” polytopes which can be maximal
decompositions, a classification of which already exists [3, 1]

3 Use these formulas to create a polynomial time algorithm for computing a
minimum distance formula of a polytope not containing the exceptional
triangle in any maximal decomposition
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