Toric Surface Codes and the Periodicity of Polytopes

Amelia Gibbs, Eliza Hogan, Jenna Plute, and Nicholas Toloczko Advised by Dr. Jabbusch

The University of Michigan-Dearborn

January 10, 2025

1/21

Contents

Preliminaries

Periodicity of Polytopes

3 A Minimum Distance Formula

Preliminaries

What is a code?

- Let \mathbb{F}_q be a finite field, with $q=p^l$ elements. A code C over \mathbb{F}_q is a subset of $\mathbb{F}_q^n=\mathbb{F}_q\times\ldots\times\mathbb{F}_q$.
- ② Elements of a code are called **codewords**, and the **length** of the code is **n**, where $C \subset \mathbb{F}_a^n$.
- ② C is a **linear code** if it is a vector subspace of \mathbb{F}_q^n , and the dimension of the code is $k := \dim_{\mathbb{F}_q^n} C$. The dimension of the code tells us how much information each codeword contains.

What is a code?

• For $x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n)\in\mathbb{F}_q^n$, Hamming distance from x to y is

$$d(x, y) := \#\{i | x_i \neq y_i\}$$

The **Hamming weight** of x is $wt(x) = d(x, (0, 0, \dots, 0))$, or simply the number of non-zero entries in a codeword.

2 The **minimum distance** of *C* is

$$d_{\min} = \min\{d(x, y) \mid x, y \in C \text{ and } x \neq y\}$$

If C is a linear code.

$$d_{\min} = \min\{wt(x)|x \in C \text{ and } x \neq (0,0,\ldots,0)\}.$$

The minimum distance of a code tells you how many errors a code can detect/correct.

5 / 21

(UM-Dearborn) Toric Surface Codes January 10, 2025

Toric Codes

Hansen (1997): Consider codes given by toric varieties:

 $\{\text{toric variety of dim } m\} \leftrightarrow \{\text{an integral convex polytope } P \subset \mathbb{R}^m\}$

Given an integral convex polytope $P \subset \mathbb{R}^m$:

$$L_P = \mathsf{Span}_{\mathbb{F}_q} \{ \mathbf{x}^\beta \mid \beta \in P \cap \mathbb{Z}^m \}$$

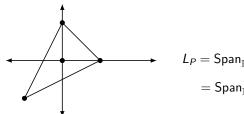
and define the evaluation map

$$ev: L_P \rightarrow \mathbb{F}_q^{(q-1)^m}$$
 $f \mapsto (f(\gamma) \mid \gamma \in (\mathbb{F}_q^*)^m)$

The image of the evaluation map gives the **toric code** $C_P(\mathbb{F}_q)$. The matrix corresponding to this evaluation map gives the generator matrix for C_P .

(UM-Dearborn) Toric Surface Codes January 10, 2025 6/21

Example: Consider the polytope $P \subset \mathbb{R}^2$ with the k=4 lattice points (0,0),(1,0),(0,1) and (-1,-1)



$$\begin{split} L_P &= \mathsf{Span}_{\mathbb{F}_q} \{ x^0 y^0, x^1 y^0, x^0 y^1, x^{-1} y^{-1} \} \\ &= \mathsf{Span}_{\mathbb{F}_q} \{ 1, x, y, x^{-1} y^{-1} \} \end{split}$$

Given $P \subset \mathbb{R}^m$, we know the length and dimension of P's corresponding code.

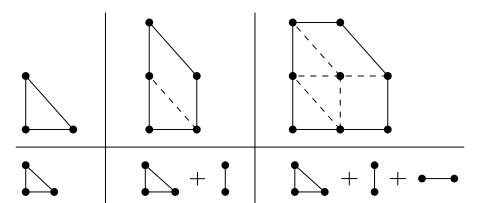
- ullet The length of $\mathcal{C}_P(\mathbb{F}_q)$ is $\mathit{n}=(\mathit{q}-1)^{\mathit{m}}$
- ullet The dimension of $\mathcal{C}_P(\mathbb{F}_q)$ is k= the number of lattice points in P
- The minimum distance of C_P , denoted $d(C_P)$, is exactly $(q-1)^m \max_{0 \neq f \in L_P} |Z(f)|$ where Z(f) is the set of all $(\mathbb{F}_q^{\times})^m$ -zeros of f.

(UM-Dearborn) Toric Surface Codes January 10, 2025 7/21

Minkowski Sum

Let P and Q be convex polytopes in \mathbb{R}^m . Their **Minkowski sum** is

$$P + Q := \{ p + q \in \mathbb{R}^m | p \in P, q \in Q \}$$

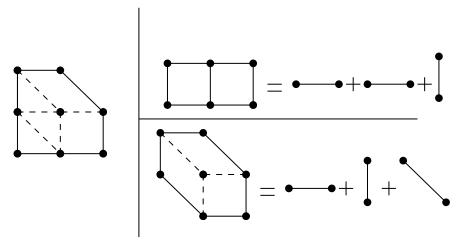


Minkowski Length

The (full) **Minkowski length** L = L(P) of a lattice polytope P is the largest number of primitive segments (line segments with lattice points only on each end) whose Minkowski sum is in P.

Equivalently, L(P) is the largest number of non-trivial lattice polytopes whose Minkowski sum is in P. Such a polytope is called a **maximal decomposition** in P.

Minkowski Length Example



A Connection to Toric Surface Codes

Building on the work of Suprunov and Suprunova [1],

Proposition

Suppose that $P \subset \mathbb{R}^2$ does not contain an exceptional triangle in any maximal decomposition. Let $0 \neq g \in L_P$ be a polynomial with maximum number of zeros and $g = g_1 \dots g_r$ be its factorization into irreducible polynomials. Then, when q is sufficiently large, we have that r = L(P).

A Connection to Toric Surface Codes

Building on the work of Suprunov and Suprunova [1],

Proposition

Suppose that $P \subset \mathbb{R}^2$ does not contain an exceptional triangle in any maximal decomposition. Let $0 \neq g \in L_P$ be a polynomial with maximum number of zeros and $g = g_1 \dots g_r$ be its factorization into irreducible polynomials. Then, when q is sufficiently large, we have that r = L(P).

Take-away: To compute the maximum number of zeros in L_P (equivalently $d(C_P)$), we only need to look at the polynomials corresponding to maximal decompositions in P.

The Mapping Lemma

Lemma

Let

$$P = m[0, e_1] + n[0, e_2] + \ell[0, e_1 + e_2]$$

then, for $Z \subseteq P$, $|\partial Z \cap \mathbb{Z}| \leq |\partial P \cap \mathbb{Z}|$.

The Mapping Lemma

Lemma

Let

$$P = m[0, e_1] + n[0, e_2] + \ell[0, e_1 + e_2]$$

then, for $Z \subseteq P$, $|\partial Z \cap \mathbb{Z}| \leq |\partial P \cap \mathbb{Z}|$.

Corollary

For P as above, $L(P) = m + n + \ell$.

Periodicity of Polytopes

13 / 21

(UM-Dearborn) Toric Surface Codes January 10, 2025

Scaling a Polytope

One important transformation is the t-dilation of a polytope P

$$tP := \{tp : p \in P\}.$$

While this transformation is easily defined, the effect it has on the Minkowski length of P is not so easily described.

Period-1 Polytopes

We know that

$$Q = m[0, \vec{e}_1] + n[0, \vec{e}_2] + \ell[0, \vec{e}_1 + \vec{e}_2]$$

has Minkowski length $m+n+\ell$ so $L(tQ)=tm+tn+t\ell=tL(Q)$.

15 / 21

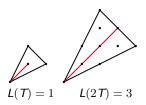
(UM-Dearborn) Toric Surface Codes

Period-1 Polytopes

We know that

$$Q = m[0, \vec{e}_1] + n[0, \vec{e}_2] + \ell[0, \vec{e}_1 + \vec{e}_2]$$

has Minkowski length $m+n+\ell$ so $L(tQ)=tm+tn+t\ell=tL(Q)$. But this isn't the case for the exceptional triangle.

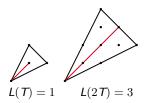


Period-1 Polytopes

We know that

$$Q = m[0, \vec{e}_1] + n[0, \vec{e}_2] + \ell[0, \vec{e}_1 + \vec{e}_2]$$

has Minkowski length $m+n+\ell$ so $L(tQ)=tm+tn+t\ell=tL(Q)$. But this isn't the case for the exceptional triangle.



Definition

Let $P \subset \mathbb{R}^m$ be a convex integral polytope. We say that P is a **period-1** polytope iff L(tP) = tL(P) for all $t \geq 0$. If there is some t such that L(tP) > tL(P) then we say that P has **period strictly greater than 1**. Equivalently defined in [2].

4 D > 4 B > 4 B > 4 B >

Period-1 Polytopes and The Exceptional Triangle

It is known that the exceptional triangle can appear as a summand in a maximal decomposition [1]. But, can this happen for a period-1 polytope?

Period-1 Polytopes and The Exceptional Triangle

It is known that the exceptional triangle can appear as a summand in a maximal decomposition [1]. But, can this happen for a period-1 polytope? If $T+Q_2+\cdots+Q_L=Q\subseteq P$ is a maximal decomposition then

$$L(tP) \ge L(tQ) \ge L(tT) + t(L-1) > tL = tL(P)$$

as L(tT) > t when t > 1.

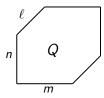
Proposition

If P is a period-1 polytope then the exceptional triangle doesn't appear in any maximal decomposition.

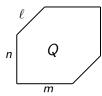
A Minimum Distance Formula

(UM-Dearborn) Toric Surface Codes January 10, 2025 17 / 21

It is known [1] that all smallest maximal decompositions are lattice equivalent to $Q=m[0,\vec{e}_1]+n[0,\vec{e}_2]+\ell[0,\vec{e}_1+\vec{e}_2].$



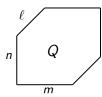
It is known [1] that all smallest maximal decompositions are lattice equivalent to $Q=m[0,\vec{e}_1]+n[0,\vec{e}_2]+\ell[0,\vec{e}_1+\vec{e}_2].$



Lemma

The only maximal decomposition in Q is Q itself.

It is known [1] that all smallest maximal decompositions are lattice equivalent to $Q=m[0,\vec{e}_1]+n[0,\vec{e}_2]+\ell[0,\vec{e}_1+\vec{e}_2].$



Lemma

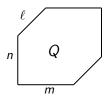
The only maximal decomposition in Q is Q itself.

Thus, the polynomial in L_Q which has the maximum number of zeros takes the form

$$\prod_{i=1}^{m} (x-a_i) \prod_{i=1}^{n} (y-b_i) \prod_{i=1}^{\ell} (xy-c_i).$$

(UM-Dearborn)

It is known [1] that all smallest maximal decompositions are lattice equivalent to $Q=m[0,\vec{e}_1]+n[0,\vec{e}_2]+\ell[0,\vec{e}_1+\vec{e}_2].$



Theorem

The minimum distance of the toric code associate to Q is

$$\label{eq:defCQ} \textit{d}(\textit{C}_{\textit{Q}}) = \begin{cases} (q-1)^2 - \textit{L}(\textit{Q})(q-1) + \textit{mn}, & \text{when } \ell = 0 \\ (q-1)^2 - \textit{L}(\textit{Q})(q-1) + \ell(\textit{m} + \textit{n}) & \text{when } \ell > 0 \end{cases}.$$

19 / 21

(UM-Dearborn) Toric Surface Codes January 10, 2025

Acknowledgements

This research was completed at the REU Site: Mathematical Analysis and Applications at the University of Michigan-Dearborn. We would like to thank the National Science Foundation (DMS-1950102, Grant No. 2015553, and DMS-2243808), the National Security Agency (H98230-24), the College of Arts, Sciences, and Letters, and the Department of Mathematics and Statistics for their support.

References

- Ivan Soprunov and Jenya Soprunova. Toric surface codes and Minkowski length of polygons. SIAM J. Discrete Math., 23(1):384-400, 2008/09.
- [2] Ivan Soprunov and Jenya Soprunova. Eventual guasi-linearity of the Minkowski length. European J. Combin., 58:107–117, 2016.