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Background Original Recurrence Generalization

Rascal Triangle
Original Recurrence

Consider the following:

1
1 1
1 2 1
1 3 3 1
1 4 5 4 1

1 5 7 7 5 1
1 6 9 10 9 6 1

Anggorro et al. defined the rascal triangle (A077028) by

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1

with R0,n = Rn,n = 1 for n ≥ 0 and Rn,k = 0 if n, k < 0 or n < k.
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Background Original Recurrence Generalization

Rascal Triangle
Fleron’s Reccurence

Fleron showed that

Rn,k = Rn−1,k + Rn−1,k−1 − Rn−2,k−1 + 1

with the same initial conditions.
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Background Original Recurrence Generalization

Combinatorial Interpretation

We noticed that

n∑
k=0

Rn,k =

(
n + 1

3

)
+ n + 1.

Theorem

Rn,k is the number of binary words of length n with k 1s that have
at most 1 ascent. Denote the set of all such words as Bk(n) and
set bk(n) = |Bk(n)|.
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Background Original Recurrence Generalization

Combinatorial Interpretation
Proof

Theorem (Fleron’s Recurrence)

For 0 ≤ k ≤ n,

bk(n) = bk(n − 1) + bk−1(n − 1)− bk−1(n − 2) + 1

and satisfies the same initial conditions as Rn,k .

Proof.

Case 1. If w ∈ Bk(n) ends in a 0, remove it to get a word in
Bk(n − 1). So bk(n − 1) such w .
Case 2. If w ∈ Bk(n) ends in a 1, remove it to get a word in
Bk−1(n − 1). This word cannot end in a 0 and have 1 ascent. So
bk−1(n − 1)− (bk−1(n − 2)− 1) such w .
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Background Original Recurrence Generalization

Revisiting the Original Recurrence
Proof

Theorem

For 0 < k < n,

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1
.

Proof (Sketch).

We will equivalently show that
Rn,kRn−2,k−1 − Rn−1,kRn−1,k−1 = 1.

Rn−1,k counts words in Bk(n) ending in at least one 0.
Rn−1,k−1 counts words in Bk(n) beginning in at least one 1.
Rn−2,k−1 counts words in Bk(n) beginning in at least one 1 and
ending in at least one 0.
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Background Original Recurrence Generalization

Revisiting the Original Recurrence
Proof Continued

Theorem

For 0 < k < n,

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1
.

Proof (Sketch).

Rn,kRn−2,k−1 counts S =
{
(w , 1 z 0) ∈ (Bk(n))

2
}
.

Rn−1,kRn−1,k−1 counts T =
{
(α 0, 1 β) ∈ (Bk(n))

2
}
.

Pair off elements in T ∩ S with the inclusion map. Apply
(w , z) 7→ (z ,w) to “appropriate” elements of T . Apply

(0y1k0n−k−y , 1x0n−k1k−x) 7→ (0n−k1k , 1x0y1k−x0n−k−y )
to all remaining elements of T .

Gibbs Combinatorial Interpretation of Rascal Numbers



Background Original Recurrence Generalization

Revisiting the Original Recurrence
Proof Continued

Theorem

For 0 < k < n,

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1
.

Proof (Sketch).

Rn,kRn−2,k−1 counts S =
{
(w , 1 z 0) ∈ (Bk(n))

2
}
.

Rn−1,kRn−1,k−1 counts T =
{
(α 0, 1 β) ∈ (Bk(n))

2
}
.

Pair off elements in T ∩ S with the inclusion map. Apply
(w , z) 7→ (z ,w) to “appropriate” elements of T . Apply

(0y1k0n−k−y , 1x0n−k1k−x) 7→ (0n−k1k , 1x0y1k−x0n−k−y )
to all remaining elements of T .

Gibbs Combinatorial Interpretation of Rascal Numbers



Background Original Recurrence Generalization

Revisiting the Original Recurrence
Proof Continued

Theorem

For 0 < k < n,

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1
.

Proof (Sketch).

Rn,kRn−2,k−1 counts S =
{
(w , 1 z 0) ∈ (Bk(n))

2
}
.

Rn−1,kRn−1,k−1 counts T =
{
(α 0, 1 β) ∈ (Bk(n))

2
}
.

Pair off elements in T ∩ S with the inclusion map. Apply
(w , z) 7→ (z ,w) to “appropriate” elements of T . Apply

(0y1k0n−k−y , 1x0n−k1k−x) 7→ (0n−k1k , 1x0y1k−x0n−k−y )
to all remaining elements of T .

Gibbs Combinatorial Interpretation of Rascal Numbers



Background Original Recurrence Generalization

Revisiting the Original Recurrence
Proof Continued

Theorem

For 0 < k < n,

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1
.

Proof (Sketch).

Rn,kRn−2,k−1 counts S =
{
(w , 1 z 0) ∈ (Bk(n))

2
}
.

Rn−1,kRn−1,k−1 counts T =
{
(α 0, 1 β) ∈ (Bk(n))

2
}
.

Pair off elements in T ∩ S with the inclusion map.

Apply
(w , z) 7→ (z ,w) to “appropriate” elements of T . Apply

(0y1k0n−k−y , 1x0n−k1k−x) 7→ (0n−k1k , 1x0y1k−x0n−k−y )
to all remaining elements of T .

Gibbs Combinatorial Interpretation of Rascal Numbers



Background Original Recurrence Generalization

Revisiting the Original Recurrence
Proof Continued

Theorem

For 0 < k < n,

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1
.

Proof (Sketch).

Rn,kRn−2,k−1 counts S =
{
(w , 1 z 0) ∈ (Bk(n))

2
}
.

Rn−1,kRn−1,k−1 counts T =
{
(α 0, 1 β) ∈ (Bk(n))

2
}
.

Pair off elements in T ∩ S with the inclusion map. Apply
(w , z) 7→ (z ,w) to “appropriate” elements of T .

Apply
(0y1k0n−k−y , 1x0n−k1k−x) 7→ (0n−k1k , 1x0y1k−x0n−k−y )

to all remaining elements of T .

Gibbs Combinatorial Interpretation of Rascal Numbers



Background Original Recurrence Generalization

Revisiting the Original Recurrence
Proof Continued

Theorem

For 0 < k < n,

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1
.

Proof (Sketch).

Rn,kRn−2,k−1 counts S =
{
(w , 1 z 0) ∈ (Bk(n))

2
}
.

Rn−1,kRn−1,k−1 counts T =
{
(α 0, 1 β) ∈ (Bk(n))

2
}
.

Pair off elements in T ∩ S with the inclusion map. Apply
(w , z) 7→ (z ,w) to “appropriate” elements of T . Apply

(0y1k0n−k−y , 1x0n−k1k−x) 7→ (0n−k1k , 1x0y1k−x0n−k−y )
to all remaining elements of T .

Gibbs Combinatorial Interpretation of Rascal Numbers



Background Original Recurrence Generalization

Revisiting the Original Recurrence
Proof Concluded

Theorem

For 0 < k < n,

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1
.

Proof (Sketch).

The only remaining element of S is (0n−k1k , 1k0n−k).

Gibbs Combinatorial Interpretation of Rascal Numbers



Background Original Recurrence Generalization

Revisiting the Original Recurrence
Proof Concluded

Theorem

For 0 < k < n,

Rn,k =
Rn−1,kRn−1,k−1 + 1

Rn−2,k−1
.

Proof (Sketch).

The only remaining element of S is (0n−k1k , 1k0n−k).

Gibbs Combinatorial Interpretation of Rascal Numbers



Background Original Recurrence Generalization

Generalization
Definition

Definition

Let B j
k(n) denote the set of all binary words of length n containing

exactly k 1s which have at most j ascents. Set |B j
k(n)| = R

(j)
n,k .
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Background Original Recurrence Generalization

Generalization
Linear Recurrence

Theorem

For 0 ≤ k ≤ n and 0 ≤ j ,

R
(j)
n,k = R

(j)
n−1,k + R

(j)
n−1,k−1 − R

(j)
n−2,k−1 + R

(j−1)
n−2,k−1

with R
(j)
n,k = 0 when n, k, j < 0 or n < k and R

(j)
0,0 = R

(j)
1,0 = R

(j)
1,1 = 1.

Proof.

Case 1. If w ∈ B j
k(n) ends in a 0, remove it to get a word in

B j
k(n − 1). So R

(j)
n−1,k such w .

Case 2. If w ∈ B j
k(n) ends in a 1, remove it to get a word in

B j
k−1(n − 1). This word cannot end in a 0 and have j ascents. So

R
(j)
n−1,k−1 −

(
R
(j)
n−2,k−1 − R

(j)
n−2,k−1

)
such w .
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Generalization
Equivalent Definition

Definition

Gregory et al. defined the set of rascal subsets as(
[n]

k

)
j

= {S ⊆ [n] : |S ∩ [n − k]| ≤ j , |S | = k} .
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A Conjecture of Gregory

Conjecture (Gregory et al., 2023)

For j ≥ 0,
4j+3∑
k=0

R
(j)
4j+3,k = 24j+2
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A Conjecture of Gregory
Generalized Row Sum

Theorem

For n, j ≥ 0,
n∑

k=0

R
(j)
n,k =

2j+1∑
k=0

(
n

k

)
.

Proof.

Let B j(n) =
⋃

k B
j
k(n). For w = w1 . . .wn ∈ B j(n), we note that

asc(w) ≤ j and des(w) ≤ j + 1.
If w1 = 0 then des(w) ≤ j , so w 7→ Des(w) ∪ Asc(w) ∪ {n}.
If w1 = 1 then w 7→ Des(w) ∪ Asc(w).
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A Conjecture For You
Generalization of Original Recurrence

Conjecture

For 0 < k < n and 0 ≤ j ,

R
(j)
n,k =

R
(j)
n−1,kR

(j)
n−1,k−1 + E (n, k , j)

R
(j)
n−2,k−1

.

We conjecture that E has a “nice” closed form.

We know that E (n, k , 0) = 0 and E (n, k, 1) = 1 works.

Through numerical tests, we’ve found E (n, k , 2) = R
(2)
2−n,1−k which

we’ve confirmed algebraically.
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The End

Thanks for listening!

Questions?
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