Combinatorial Interpretation of Rascal Numbers

Amelia G. Gibbs (joint work with Brian K. Miceli)

CombinaTexas 2024 Texas A&M March 23, 2024

Outline

The Basics

Outline

The Basics

2 Revisiting the Original Recurrence

Outline

The Basics

2 Revisiting the Original Recurrence

3 A Generalization and A Generalized Row Sum

Original Recurrence

Gibbs

Original Recurrence

Consider the following:

```
1
1 1
1 2 1
1 3 3 1
```

Original Recurrence

Consider the following:

```
1
1 1
1 2 1
1 3 3 1
1 4 5 4 1
```

Original Recurrence

Consider the following:

Anggorro et al. defined the rascal triangle (A077028) by

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1} + 1}{R_{n-2,k-1}}$$

with $R_{0,n} = R_{n,n} = 1$ for $n \ge 0$ and $R_{n,k} = 0$ if n, k < 0 or n < k.

Original Recurrence

000

Consider the following:

Anggorro et al. defined the rascal triangle (A077028) by

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1} + 1}{R_{n-2,k-1}}$$

with $R_{0,n} = R_{n,n} = 1$ for $n \ge 0$ and $R_{n,k} = 0$ if n, k < 0 or n < k.

Fleron's Reccurence

Fleron's Reccurence

Fleron showed that

$$R_{n,k} = R_{n-1,k} + R_{n-1,k-1} - R_{n-2,k-1} + 1$$

with the same initial conditions.

We noticed that

$$\sum_{k=0}^{n} R_{n,k} = \binom{n+1}{3} + n + 1.$$

We noticed that

$$\sum_{k=0}^{n} R_{n,k} = \binom{n+1}{3} + n + 1.$$

Theorem

 $R_{n,k}$ is the number of binary words of length n with k 1s that have at most 1 ascent.

We noticed that

$$\sum_{k=0}^{n} R_{n,k} = \binom{n+1}{3} + n + 1.$$

Theorem

 $R_{n,k}$ is the number of binary words of length n with k 1s that have at most 1 ascent. Denote the set of all such words as $B_k(n)$ and set $b_k(n) = |B_k(n)|$.

Proof

Proof

Theorem (Fleron's Recurrence)

For
$$0 \le k \le n$$
,

$$b_k(n) = b_k(n-1) + b_{k-1}(n-1) - b_{k-1}(n-2) + 1$$

and satisfies the same initial conditions as $R_{n,k}$.

Proof

Theorem (Fleron's Recurrence)

For $0 \le k \le n$,

$$b_k(n) = b_k(n-1) + b_{k-1}(n-1) - b_{k-1}(n-2) + 1$$

and satisfies the same initial conditions as $R_{n,k}$.

Proof.

Case 1. If $w \in B_k(n)$ ends in a 0,

Proof

Theorem (Fleron's Recurrence)

For $0 \le k \le n$,

$$b_k(n) = b_k(n-1) + b_{k-1}(n-1) - b_{k-1}(n-2) + 1$$

and satisfies the same initial conditions as $R_{n,k}$.

Proof.

Case 1. If $w \in B_k(n)$ ends in a 0, remove it to get a word in $B_k(n-1)$.

Gibbs

Proof

Theorem (Fleron's Recurrence)

For $0 \le k \le n$,

$$b_k(n) = b_k(n-1) + b_{k-1}(n-1) - b_{k-1}(n-2) + 1$$

and satisfies the same initial conditions as $R_{n,k}$.

Proof.

Case 1. If $w \in B_k(n)$ ends in a 0, remove it to get a word in $B_k(n-1)$. So $b_k(n-1)$ such w.

Proof

Theorem (Fleron's Recurrence)

For $0 \le k \le n$,

$$b_k(n) = b_k(n-1) + b_{k-1}(n-1) - b_{k-1}(n-2) + 1$$

and satisfies the same initial conditions as $R_{n,k}$.

Proof.

Case 1. If $w \in B_k(n)$ ends in a 0, remove it to get a word in

 $B_k(n-1)$. So $b_k(n-1)$ such w.

Case 2. If $w \in B_k(n)$ ends in a 1,

Proof

Theorem (Fleron's Recurrence)

For $0 \le k \le n$,

$$b_k(n) = b_k(n-1) + b_{k-1}(n-1) - b_{k-1}(n-2) + 1$$

and satisfies the same initial conditions as $R_{n,k}$.

Proof.

Case 1. If $w \in B_k(n)$ ends in a 0, remove it to get a word in $B_k(n-1)$. So $b_k(n-1)$ such w.

Case 2. If $w \in B_k(n)$ ends in a 1, remove it to get a word in $B_{k-1}(n-1)$.

Proof

Theorem (Fleron's Recurrence)

For $0 \le k \le n$,

$$b_k(n) = b_k(n-1) + b_{k-1}(n-1) - b_{k-1}(n-2) + 1$$

and satisfies the same initial conditions as $R_{n,k}$.

Proof.

Case 1. If $w \in B_k(n)$ ends in a 0, remove it to get a word in $B_k(n-1)$. So $b_k(n-1)$ such w.

Case 2. If $w \in B_k(n)$ ends in a 1, remove it to get a word in $B_{k-1}(n-1)$. This word cannot end in a 0 and have 1 ascent.

Proof

Theorem (Fleron's Recurrence)

For $0 \le k \le n$,

$$b_k(n) = b_k(n-1) + b_{k-1}(n-1) - b_{k-1}(n-2) + 1$$

and satisfies the same initial conditions as $R_{n,k}$.

Proof.

Case 1. If $w \in B_k(n)$ ends in a 0, remove it to get a word in $B_k(n-1)$. So $b_k(n-1)$ such w.

Gibbs

Case 2. If $w \in B_k(n)$ ends in a 1, remove it to get a word in $B_{k-1}(n-1)$. This word cannot end in a 0 and have 1 ascent. So $b_{k-1}(n-1) - (b_{k-1}(n-2) - 1)$ such w.

Proof

Proof

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof (Sketch).

We will equivalently show that

$$R_{n,k}R_{n-2,k-1} - R_{n-1,k}R_{n-1,k-1} = 1.$$

Proof

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof (Sketch).

We will equivalently show that

$$R_{n,k}R_{n-2,k-1}-R_{n-1,k}R_{n-1,k-1}=1.$$

 $R_{n-1,k}$ counts words in $B_k(n)$ ending in at least one 0.

Proof

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof (Sketch).

We will equivalently show that

$$R_{n,k}R_{n-2,k-1}-R_{n-1,k}R_{n-1,k-1}=1.$$

 $R_{n-1,k}$ counts words in $B_k(n)$ ending in at least one 0.

 $R_{n-1,k-1}$ counts words in $B_k(n)$ beginning in at least one 1.

Proof

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof (Sketch).

We will equivalently show that

$$R_{n,k}R_{n-2,k-1} - R_{n-1,k}R_{n-1,k-1} = 1.$$

 $R_{n-1,k}$ counts words in $B_k(n)$ ending in at least one 0.

 $R_{n-1,k-1}$ counts words in $B_k(n)$ beginning in at least one 1.

 $R_{n-2,k-1}$ counts words in $B_k(n)$ beginning in at least one 1 and ending in at least one 0.

Proof Continued

Theorem

For 0 < k < n.

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof Continued

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

$$R_{n,k}R_{n-2,k-1}$$
 counts $S = \{(w, 1 \ z \ 0) \in (B_k(n))^2\}.$

Proof Continued

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

$$R_{n,k}R_{n-2,k-1}$$
 counts $S = \{(w, 1 \ z \ 0) \in (B_k(n))^2\}.$
 $R_{n-1,k}R_{n-1,k-1}$ counts $T = \{(\alpha \ 0, 1 \ \beta) \in (B_k(n))^2\}.$

Proof Continued

$\mathsf{Theorem}$

For 0 < k < n.

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof (Sketch).

$$R_{n,k}R_{n-2,k-1}$$
 counts $S = \{(w, 1 \ z \ 0) \in (B_k(n))^2\}$.
 $R_{n-1,k}R_{n-1,k-1}$ counts $T = \{(\alpha \ 0, 1 \ \beta) \in (B_k(n))^2\}$.
Pair off elements in $T \cap S$ with the inclusion map.

Gibbs

Proof Continued

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof (Sketch).

 $R_{n,k}R_{n-2,k-1}$ counts $S = \{(w,1\ z\ 0) \in (B_k(n))^2\}$. $R_{n-1,k}R_{n-1,k-1}$ counts $T = \{(\alpha\ 0,1\ \beta) \in (B_k(n))^2\}$. Pair off elements in $T \cap S$ with the inclusion map. Apply $(w,z) \mapsto (z,w)$ to "appropriate" elements of T.

Proof Continued

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

$$R_{n,k}R_{n-2,k-1} \text{ counts } S = \left\{ (w,1\ z\ 0) \in (B_k(n))^2 \right\}.$$

$$R_{n-1,k}R_{n-1,k-1} \text{ counts } T = \left\{ (\alpha\ 0,1\ \beta) \in (B_k(n))^2 \right\}.$$
Pair off elements in $T \cap S$ with the inclusion map. Apply $(w,z) \mapsto (z,w)$ to "appropriate" elements of T . Apply $(0^y1^k0^{n-k-y},\ 1^x0^{n-k}1^{k-x}) \mapsto (0^{n-k}1^k,\ 1^x0^y1^{k-x}0^{n-k-y})$ to all remaining elements of T .

Revisiting the Original Recurrence

Proof Concluded

Theorem

For 0 < k < n.

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof (Sketch).

Revisiting the Original Recurrence

Proof Concluded

Theorem

For 0 < k < n,

$$R_{n,k} = \frac{R_{n-1,k}R_{n-1,k-1}+1}{R_{n-2,k-1}}.$$

Proof (Sketch).

The only remaining element of *S* is $(0^{n-k}1^k, 1^k0^{n-k})$.

Definition

Definition

Definition

Let $B_k^j(n)$ denote the set of all binary words of length n containing exactly k 1s which have at most j ascents.

Definition

Definition

Let $B_k^j(n)$ denote the set of all binary words of length n containing exactly k 1s which have at most j ascents. Set $|B_k^j(n)| = R_{n,k}^{(j)}$.

Definition

Definition

Let $B_k^j(n)$ denote the set of all binary words of length n containing exactly k 1s which have at most j ascents. Set $|B_k^j(n)| = R_{n,k}^{(j)}$.

When j = 2, the first few rows of this sequence are

Definition

Definition

Let $B_k^j(n)$ denote the set of all binary words of length n containing exactly k 1s which have at most j ascents. Set $|B_k^j(n)| = R_{n,k}^{(j)}$.

When j = 2, the first few rows of this sequence are

Linear Recurrence

Linear Recurrence

Theorem

For
$$0 \le k \le n$$
 and $0 \le j$,
$$R_{n,k}^{(j)} = R_{n-1,k}^{(j)} + R_{n-1,k-1}^{(j)} - R_{n-2,k-1}^{(j)} + R_{n-2,k-1}^{(j-1)}$$
 with $R_{n,k}^{(j)} = 0$ when $n, k, j < 0$ or $n < k$ and $R_{0,0}^{(j)} = R_{1,0}^{(j)} = R_{1,1}^{(j)} = 1$.

Linear Recurrence

Theorem

For
$$0 \le k \le n$$
 and $0 \le j$,
$$R_{n,k}^{(j)} = R_{n-1,k}^{(j)} + R_{n-1,k-1}^{(j)} - R_{n-2,k-1}^{(j)} + R_{n-2,k-1}^{(j-1)}$$
 with $R_{n,k}^{(j)} = 0$ when $n, k, j < 0$ or $n < k$ and $R_{0,0}^{(j)} = R_{1,0}^{(j)} = R_{1,1}^{(j)} = 1$.

Proof.

Case 1. If $w \in B_k^j(n)$ ends in a 0,

Linear Recurrence

Theorem

For
$$0 \le k \le n$$
 and $0 \le j$,
$$R_{n,k}^{(j)} = R_{n-1,k}^{(j)} + R_{n-1,k-1}^{(j)} - R_{n-2,k-1}^{(j)} + R_{n-2,k-1}^{(j-1)}$$
 with $R_{n,k}^{(j)} = 0$ when $n, k, j < 0$ or $n < k$ and $R_{0,0}^{(j)} = R_{1,0}^{(j)} = R_{1,1}^{(j)} = 1$.

Proof.

Case 1. If $w \in B_k^j(n)$ ends in a 0, remove it to get a word in $B_k^j(n-1)$.

Linear Recurrence

Theorem

For
$$0 \le k \le n$$
 and $0 \le j$,
$$R_{n,k}^{(j)} = R_{n-1,k}^{(j)} + R_{n-1,k-1}^{(j)} - R_{n-2,k-1}^{(j)} + R_{n-2,k-1}^{(j-1)}$$
 with $R_{n,k}^{(j)} = 0$ when $n, k, j < 0$ or $n < k$ and $R_{0,0}^{(j)} = R_{1,0}^{(j)} = R_{1,1}^{(j)} = 1$.

Proof.

Case 1. If $w \in B_k^j(n)$ ends in a 0, remove it to get a word in $B_k^j(n-1)$. So $R_{n-1,k}^{(j)}$ such w.

Linear Recurrence

Theorem

For
$$0 \le k \le n$$
 and $0 \le j$,
$$R_{n,k}^{(j)} = R_{n-1,k}^{(j)} + R_{n-1,k-1}^{(j)} - R_{n-2,k-1}^{(j)} + R_{n-2,k-1}^{(j-1)}$$
 with $R_{n,k}^{(j)} = 0$ when $n, k, j < 0$ or $n < k$ and $R_{0,0}^{(j)} = R_{1,0}^{(j)} = R_{1,1}^{(j)} = 1$.

Proof.

Case 1. If $w \in B_k^J(n)$ ends in a 0, remove it to get a word in $B_k^J(n-1)$. So $R_{n-1,k}^{(j)}$ such w.

Case 2. If $w \in B_k^j(n)$ ends in a 1,

Linear Recurrence

Theorem

For
$$0 \le k \le n$$
 and $0 \le j$,
$$R_{n,k}^{(j)} = R_{n-1,k}^{(j)} + R_{n-1,k-1}^{(j)} - R_{n-2,k-1}^{(j)} + R_{n-2,k-1}^{(j-1)}$$
 with $R_{n,k}^{(j)} = 0$ when $n, k, j < 0$ or $n < k$ and $R_{0,0}^{(j)} = R_{1,0}^{(j)} = R_{1,1}^{(j)} = 1$.

Proof.

Case 1. If $w \in B_k^j(n)$ ends in a 0, remove it to get a word in $B_k^j(n-1)$. So $R_{n-1,k}^{(j)}$ such w.

Case 2. If $w \in B_k^j(n)$ ends in a 1, remove it to get a word in $B_{k-1}^j(n-1)$.

Linear Recurrence

Theorem

For
$$0 \le k \le n$$
 and $0 \le j$,
$$R_{n,k}^{(j)} = R_{n-1,k}^{(j)} + R_{n-1,k-1}^{(j)} - R_{n-2,k-1}^{(j)} + R_{n-2,k-1}^{(j-1)}$$
 with $R_{n,k}^{(j)} = 0$ when $n, k, j < 0$ or $n < k$ and $R_{0,0}^{(j)} = R_{1,0}^{(j)} = R_{1,1}^{(j)} = 1$.

Proof.

Case 1. If $w \in B_k^j(n)$ ends in a 0, remove it to get a word in $B_k^j(n-1)$. So $R_{n-1,k}^{(j)}$ such w.

Case 2. If $w \in B_k^j(n)$ ends in a 1, remove it to get a word in $B_{k-1}^j(n-1)$. This word cannot end in a 0 and have j ascents.

Linear Recurrence

Theorem

For
$$0 \le k \le n$$
 and $0 \le j$,
$$R_{n,k}^{(j)} = R_{n-1,k}^{(j)} + R_{n-1,k-1}^{(j)} - R_{n-2,k-1}^{(j)} + R_{n-2,k-1}^{(j-1)}$$
 with $R_{n,k}^{(j)} = 0$ when $n, k, j < 0$ or $n < k$ and $R_{0,0}^{(j)} = R_{1,0}^{(j)} = R_{1,1}^{(j)} = 1$.

Proof.

Case 1. If $w \in B_k^j(n)$ ends in a 0, remove it to get a word in $B_k^j(n-1)$. So $R_{n-1,k}^{(j)}$ such w.

Case 2. If $w \in B_k^j(n)$ ends in a 1, remove it to get a word in $B_{k-1}^j(n-1)$. This word cannot end in a 0 and have j ascents. So $R_{n-1,k-1}^{(j)} - \left(R_{n-2,k-1}^{(j)} - R_{n-2,k-1}^{(j)}\right)$ such w.

Equivalent Definition

Equivalent Definition

Definition

Gregory et al. defined the set of rascal subsets as

$$\binom{[n]}{k}_{j} = \left\{ S \subseteq [n] : |S \cap [n-k]| \le j, |S| = k \right\}.$$

Conjecture (Gregory et al., 2023)

For $j \geq 0$,

$$\sum_{k=0}^{4j+3} R_{4j+3,k}^{(j)} = 2^{4j+2}$$

Generalized Row Sum

Generalized Row Sum

Theorem

For $n, j \geq 0$,

$$\sum_{k=0}^{n} R_{n,k}^{(j)} = \sum_{k=0}^{2j+1} \binom{n}{k}.$$

Generalized Row Sum

Theorem

For $n, j \geq 0$,

$$\sum_{k=0}^{n} R_{n,k}^{(j)} = \sum_{k=0}^{2j+1} \binom{n}{k}.$$

Proof.

Let $B^{j}(n) = \bigcup_{k} B_{k}^{j}(n)$.

Generalized Row Sum

Theorem

For $n, j \geq 0$,

$$\sum_{k=0}^{n} R_{n,k}^{(j)} = \sum_{k=0}^{2j+1} \binom{n}{k}.$$

Proof.

Let $B^j(n) = \bigcup_k B^j_k(n)$. For $w = w_1 \dots w_n \in B^j(n)$, we note that $asc(w) \leq j$

Generalized Row Sum

Theorem

For $n, j \geq 0$,

$$\sum_{k=0}^{n} R_{n,k}^{(j)} = \sum_{k=0}^{2j+1} \binom{n}{k}.$$

Proof.

Let $B^j(n) = \bigcup_k B^j_k(n)$. For $w = w_1 \dots w_n \in B^j(n)$, we note that $asc(w) \leq j$ and $des(w) \leq j + 1$.

Generalized Row Sum

Theorem

For $n, j \geq 0$,

$$\sum_{k=0}^{n} R_{n,k}^{(j)} = \sum_{k=0}^{2j+1} \binom{n}{k}.$$

Proof.

Let $B^j(n) = \bigcup_k B^j_k(n)$. For $w = w_1 \dots w_n \in B^j(n)$, we note that $\operatorname{asc}(w) \leq j$ and $\operatorname{des}(w) \leq j+1$. If $w_1 = 0$ then $\operatorname{des}(w) \leq j$,

Generalized Row Sum

Theorem

For $n, j \geq 0$,

$$\sum_{k=0}^{n} R_{n,k}^{(j)} = \sum_{k=0}^{2j+1} \binom{n}{k}.$$

Proof.

Let $B^j(n) = \bigcup_k B^j_k(n)$. For $w = w_1 \dots w_n \in B^j(n)$, we note that $asc(w) \leq j$ and $des(w) \leq j+1$.

If
$$w_1 = 0$$
 then $des(w) \le j$, so $w \mapsto Des(w) \cup Asc(w) \cup \{n\}$.

Generalized Row Sum

Theorem

For $n, j \geq 0$,

$$\sum_{k=0}^{n} R_{n,k}^{(j)} = \sum_{k=0}^{2j+1} \binom{n}{k}.$$

Proof.

Let $B^j(n) = \bigcup_k B^j_k(n)$. For $w = w_1 \dots w_n \in B^j(n)$, we note that $asc(w) \leq j$ and $des(w) \leq j + 1$.

If $w_1 = 0$ then $des(w) \le j$, so $w \mapsto Des(w) \cup Asc(w) \cup \{n\}$.

If $w_1 = 1$

Generalized Row Sum

Theorem

For $n, j \geq 0$,

$$\sum_{k=0}^{n} R_{n,k}^{(j)} = \sum_{k=0}^{2j+1} \binom{n}{k}.$$

Proof.

Let $B^j(n) = \bigcup_k B^j_k(n)$. For $w = w_1 \dots w_n \in B^j(n)$, we note that $asc(w) \leq j$ and $des(w) \leq j+1$.

If $w_1 = 0$ then $des(w) \le j$, so $w \mapsto Des(w) \cup Asc(w) \cup \{n\}$. If $w_1 = 1$ then $w \mapsto Des(w) \cup Asc(w)$.

Generalization of Original Recurrence

Generalization of Original Recurrence

Conjecture

For 0 < k < n and $0 \le j$,

$$R_{n,k}^{(j)} = \frac{R_{n-1,k}^{(j)} R_{n-1,k-1}^{(j)} + E(n,k,j)}{R_{n-2,k-1}^{(j)}}.$$

We conjecture that E has a "nice" closed form.

Generalization of Original Recurrence

Conjecture

For 0 < k < n and $0 \le j$,

$$R_{n,k}^{(j)} = \frac{R_{n-1,k}^{(j)} R_{n-1,k-1}^{(j)} + E(n,k,j)}{R_{n-2,k-1}^{(j)}}.$$

We conjecture that E has a "nice" closed form.

We know that E(n, k, 0) = 0 and E(n, k, 1) = 1 works.

Generalization of Original Recurrence

Conjecture

For 0 < k < n and $0 \le j$,

$$R_{n,k}^{(j)} = \frac{R_{n-1,k}^{(j)} R_{n-1,k-1}^{(j)} + E(n,k,j)}{R_{n-2,k-1}^{(j)}}.$$

We conjecture that E has a "nice" closed form.

We know that E(n, k, 0) = 0 and E(n, k, 1) = 1 works.

Through numerical tests, we've found $E(n,k,2)=R_{2-n,1-k}^{(2)}$ which we've confirmed algebraically.

The End

Thanks for listening!

The End

Thanks for listening! Questions?

Works Referenced

- A. Anggoro, E. Liu, & A. Tulloch, The Rascal Triangle, *The College Mathematics Journal*, **41.5** (2010), pp. 393-395.
- J. Gregory, B. Kronholm, & J. White, Iterated rascal triangles, Aequationes Mathematicae, (2023), https://doi.org/10.1007/s00010-023-00987-6
- J. F. Fleron, Fresh perspective bring discoveries, *Math Horizons*, 24 (2017), pp. 15.
- N. J. A. Sloane et al, The Online Encyclopedia of Integer Sequences, 2023, Available at https://www.oeis.org.