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Abstract

Results

Method of Regularized Stokeslets 

(MRS) [1]

Method of Images for Regularized 

Stokeslets (MIRS) [2]Many numerical simulations in fluid dynamics require modeling a sphere 

in motion near a boundary. In Stokes flow, the method of images for 

regularized Stokeslets (MIRS) has been widely used and validated with 

theoretical results for the rotational and translational motions of spheres 

parallel or perpendicular to a boundary, respectively. Our work, taking 

into account all possible motions of a unit sphere, presents a systematic 

study that calibrates the MIRS with the theory and dynamically similar 

experiments. 

We discover that the surface discretization called spherical centroidal 

Voronoi tessellations (SCVT) is the most accurate and robust for all 

motions as we compare SCVT with those discretizations whose point 

distributions on the sphere’s surface are symmetric with respect to the 

boundary. Depending on which regularization function used in the MIRS, 

we find a constant ratio, for all motions, of the optimal regularization 

parameter in free space to the average distance used in the SCVT 

discretization. Our study reveals how the discretization type and size, 

optimal regularization parameter, and regularization function affect the 

accuracy and robustness of sphere-motion simulations. 

The velocity u and pressure p of the fluid are found by solving the  

incompressible Stokes equations in three dimensions:

𝜇∆𝒖 =  𝛻𝑝 −  𝑭        (1)

𝛻 ∙ 𝒖 = 0 (2) 
where μ is the fluid viscosity. 𝑭 is the force density represented as 

𝒇𝟎𝜙𝜖 ෝ𝒙 − 𝒙𝟎  or  𝒇𝟎𝜓𝜖(ෝ𝒙 − 𝒙𝟎) where 𝒇𝟎   is a point force at a point 𝒙𝟎 

and 𝜙𝜖 , 𝜓𝜖 are the following regularization functions:

𝜙𝜖 𝑟 =
15𝜖4

8𝜋 𝑟2+𝜖2 7/2, 𝜓𝜖 𝑟 =
15𝜖4(40𝜖6−132𝜖4𝑟2+57𝜖2𝑟4−2𝑟6)

16𝜋 𝑟2+𝜖2 13/2  

where 𝑟 = |ෝ𝒙 − 𝒙𝟎|. 

Suppose there is a boundary at 𝑥 = 𝑤  and a Stokeslet of 

strength 𝒇𝟎 = (𝑓1, 𝑓2, 𝑓3)  centered at 𝒙𝟎 = 𝑤 + ℎ, 𝑦, 𝑧 . Set 

𝒙𝟎,𝒊𝒎 = 𝑤 − ℎ, 𝑦, 𝑧  and let 𝒙𝒆 be a point on the boundary. To 

cancel the fluid velocity at 𝒙𝒆 we impose a Stokeslet of strength 

− 𝒇𝟎, a potential dipole of strength ℎ2(−𝑓1, 𝑓2, 𝑓3), a Stokeslet 

doublet of strength 2ℎ(𝑓1, −𝑓2, −𝑓3) in the direction 𝒆𝟏, and two 

rotlets of strength ±(𝒇 × 𝒆𝟏) at 𝒙𝟎,𝒊𝒎. 

This requires the companion blob function for the potential 

dipole and the rotlets. More precisely, if 𝜙𝑠 is the blob function 

used to derive the Stokeslet at 𝒙𝟎 then

𝜙𝑑 𝑟 =
2

𝑟5
න
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𝑟
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where 𝜙𝑑 is the blob function used to derive the potential dipole 

and the rotlet of strength −(𝒇 × 𝒆𝟏). With all these components, 

we get that 𝒖 𝒙𝒆 = 𝟎. 

More generally, for 𝒙 = (𝑥1, 𝑥2, 𝑥3) with 𝑥1 ≥ 𝑤, we have

𝒖 𝒙 = 𝐒𝜙𝑠
𝒙∗, 𝒇 − 𝐒𝜙𝑠

ෝ𝒙, 𝒇 − h2𝐏𝐃𝜙𝑑
ෝ𝒙, 𝒈 + 2ℎ𝐒𝐃𝜙s

ෝ𝒙, 𝒆𝟏, 𝒈

+2ℎ𝐑𝜙𝑑
ෝ𝒙, 𝒇 × 𝒆𝟏 − 2ℎ𝐑𝜙𝑠

[ෝ𝒙, 𝒇 × 𝒆𝟏]

where 𝒙∗ = 𝒙 − 𝒙𝟎, ෝ𝒙 = 𝒙 − 𝒙𝟎,𝒊𝒎, and 𝒈 = 2 𝒇 ∙ 𝒆𝟏 𝒆𝟏 − 𝒇.

Finally, due to the linear relationship between force and velocity, 

we can form the matrix system:

𝒰 = ℳℱ
which allows us to impose a velocity on a sphere to solve for the 

net force on the sphere i.e.

ℳ−1𝒰 = ℱ.
Then the net torque is a sum of cross products of positions of 

discretized points on the sphere and the associated forces.  
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Blob function 𝜓𝜖 has the following advantages: 
• More accurate results, particularly for discretization with a large number of points 
• Smaller variance when the points of the discretization are perturbed
Discretization SCVT results are more accurate and have smaller variance because the point distribution 
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Percent Error =
|𝑆 − 𝑇|

|𝑇|
⋅ 100

S is the simulate  value, and 
T is the theoretical value.

In free space, T is 
6𝜋𝜇𝑅𝑢 for drag

8𝜋𝜇𝑅3Ω for torque
where:
𝜇 is the fluid viscosity, 
𝑅 the radius of the sphere, 
𝑢 the sphere’s velocity, and 
Ω is the sphere’s angular velocity.

𝑤 = 3.00 𝜇𝑚  with 36 trials:

𝑤 = 1.128 𝜇𝑚  with 36 trials:

Distance is the measured from the center of the unit sphere to the wall
Percent error is calculated as specified in the “Optimal Blob Sizes” section except that the theoretical values are computed using [4].

[4] S. H. Lee, L. G. Leal, Motion of a sphere in the presence of a plane interface.

 Part 2. An exact solution in bipolar co-ordinates, Journal of Fluid Mechanics, 98  (1980): 193-224.

[3] Du Q., Gunzburger M., Ju L., Constrained centroidal Voronoi tessellations for surfaces, SIAM J 
Sci Comput, 24 (2003):1488-1506.

Optimal blob size for SCVT (in free space) is approximately:
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Our study shows that SCVT using 𝝍𝝐 as the blob function is the most robust choice 
across all four spherical motions near a boundary.

[2] Ainley J., Durkin S., Embid R., Boindala P., Cortez R, The method of images for regularized 

Stokeslets, Journal of Computational Physics, 227 (2008): 4600-4616.

v

v

N = 1000 (SCVT)
N = 1016 (6-Patch)

𝑇 → 0 as distance → ∞

𝑇 → 0 as distance → ∞
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