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Sphere Discretizations

Abstract

Many numerical simulations in fluid dynamics require modeling a sphere Stokeslets (I\/l | RS) [2] SCVT [3] 6-Patch

Method of Images for Regularized

In motion near a boundary. In Stokes flow, the method of images for |
regularized Stokeslets (MIRS) has been widely used and validated with ~ SUPPose there is a boundary at x =w and a Stokeslet of

theoretical results for the rotational and translational motions of spheres ~ strength  fo = (f1,f2,f3) centered at xo = (w+h,y,z) . Set % o) % N

parallel or perpendicular to a boundary, respectively. Our work, taking xoim = (W—h,y,z) and let x, be a point on the boundary. To & . & .

Into account all possible motions of a unit sphere, presents a systematic  cancel the fluid velocity at x, we impose a Stokeslet of strength h . X, . % ) i s SR
study_that calibrates the MIRS with the theory and dynamically similar — fo, a potential dipole of strength h2(—f, f,, f3), a Stokeslet 1\/1 b 1
Experiments. doublet of strength 2h(f;,—f,, —f3) In the direction e4, and two yaxis (um) X axis (um) Y axis (M) o5 X axis ()

We discover that the surface discretization called spherical centroidal
Voronoi tessellations (SCVT) Is the most accurate and robust for all

-1 -1 1 1

rotlets of strength £(f X eq) at xg im-

[3] Du Q., Gunzburger M., Ju L., Constrained centroidal Voronoi tessellations for surfaces, SIAM J

motions as we compare SCVT with those discretizations whose point This requires the companion blob function for the potential Sci Comput, 24 (2003):1488-1506.
distributions on the sphere’s surface are symmetric with respect to the dipole and the rotlets. More precisely, if ¢, is the blob function O - | BI b S
boundary. Depending on which regularization function used in the MIRS,  ysed to derive the Stokeslet at x, then pt|ma O VASN
we find a constant ratio, for all motions, of the optimal regularization r 02 ~ Drag (Free Space) S—T)
parameter in free space to the average distance used in the SCVT b (r) = 1 4 b (t)dt \ Percent Error = T - 100
discretization. Our study reveals how the discretization type and size, d 7S S //”// Sis the simulate value, and
optimal regularization parameter, and regularization function affect the _ _ 0 _ o e 100} | Tis the theoretical value.
accuracy and robustness of sphere-motion simulations. where ¢ Is the blob function used to derive the potential dipole £ j |
_ and the rotlet of strength —(f x e4). With all these components, ¢ ) In free Spgf;];ffordrag
Method of Regularized Stokeslets we get that u(x,) = 0. | : o muRfortorque
(M RS) [1] More generally, for x = (x4, x,, x3) with x; = w, we have v where:
ulx) =S4 [x* fl =S4 [X f| — h2PD X, + 2hSD,; X eq, 1:,‘ u is the fluid viscosity,
( ) qbs[ fo]lR gb/s\[ f] thﬁd[ ,\g] d)s[ 1 g] 1041 [ | R the radius of the sphere,
The velocity u and pressure p of the fluid are found by solving the +2hRy X, f % e1] — 2hRy, [X, f X €4] o 01 02 03  os  osuthesphere’svelocity and
incompressible Stokes equations in three dimensions: where x* = x — x9, X = X — Xg ;m, and g = 2(f - e1)e; — f. Blob Size (um) {1 the sphere’s angular velocity.
pAu= Vp — F (1) Finally, due to the linear relationship between force and velocity, __Torque (Free Space)
V-u=0 (2) we can form the matrix system: .
where y is the fluid viscosity. F is the force density represented as U=Mr AT | e SCVT (‘i’f )
fod.(X — xp) or foy.(X — xo) Where f, is a point force at a point x, which allows us to impose a velocity on a sphere to solve for the ¢ SCVT ( .- )
. . . . . L \ f
and ¢, 1, are the following regularization functions: net force on the sphere I.e. ) = | Y.
15¢* 15€*(40€%-132€*r?2+57€r*-21r%) M—U=TF. 5 . | == =B-Patch
¢.(r) = 8(r2+€2)7/2’ Pe(r) = l67m(r2+€2)13/2 Then the net torque is a sum of cross products of positions of - _ (¢f)
discretized points on the sphere and the associated forces. |
where r = |% — xg]. P P : - — -b-Patch (’{,-,JF)
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Distance is the measured from the center of the unit sphere to the wall [4] S. H. Lee, L. G. Leal, Motion of a sphere in the presence of a plane interface.
Percent error is calculated as specified in the “Optimal Blob Sizes” section except that the theoretical values are computed using [4]. Part 2. An exact solution in bipolar co-ordinates, Journal of Fluid Mechanics, 98 (1980): 193-224.
All Motions (SCVT) . Ratio using ¢_ Ratio using v, Blob function Y. has the following advantages:
0.8; - - - 2 - — . ) . : :
* More accurate results, particularly for discretization with a large number of points
045 . . . . .
§ 06| 18 '  Smaller variance when the points of the discretization are perturbed
S S 216t | Discretization SCVT results are more accurate and have smaller variance because the point distribution
m 04 J e _ " J= . . . . .
= EO-% %»14 is mostly uniform on the sphere surface and does not prefer any direction with respect to a boundary
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